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It is shown that, of all nonlinear coupled resonances of the 
form 

m u 1 + n v 2 =k 

where :, n and k are positive integers and m + n > 2, those with 
m or n = 1 exhibit a different property compared to others in their 
stable regions of phase space. The difference explains the para- 
doxical result obtained by Sturrockl and Guignard2 that there are 
points of arbitrarily small amplitudes which lie outside the stable 
region. 
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Consider a coupled resonance of the form 

(21-‘1 Vl + (2q)v2 = n + E (1) 

where (2@), (2~) ano n are positive integers. It is further assumed 

,that p 4 q so that 2 = l/2, 1, 3/2,.... and q = 1, 3/2, 2,.... . 
in the tune diagram, it is convenient to define the point on the reso- 

nance line that is nearest to the point (~1, v,), 

(~P)v~~ + (2q)v20 = nt 

v =u 1 lo + El’ “2 = u20 + E2’ 

(2) 

(3) 

El = E(2P)/[(2P)2+(2q)21, E2 = El (q/p). (4) 

The distance from the point (Vl, v,) to the resonance line is 

a z 2 [El + E2,1/2 = 
2 IE1/I(2P)2+(29)211’2. (5) 

Wnen one retains only the resonance-driving term, the Hamiltonian 
in terms of the action-angle variables (I, a) can be written in the 
form 

H = (~~/2)(21~) + (~~/2)(21~) + D.cos($) (211)"(212)q (6) 

where $ = (2~) al + (2q) a2 + 6. (7) 

The amplitude 3 and the phase 6 of the driving term can be expressed 
in terms of the machine parameters and the parameters of the nonlinear 
force which is driving the resonance. By writing equations of motion 
for I1 and 12, one can easily verify that the quantity 

c : W11/(2P) - (21,)/W (8) 

is an invariant, that is, dC/hfl = 0 with the independent vari- 

able f3. 
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Analogous to the concept of fixed points in the two-dimentional 
2hase space, one can define "fixed lines" in the four-dimentional 

space (11, al, 12, a2) from the following three conditions: 

dIl/dB = dI2/d8 = d$/de = 0. (9) 

Conditions for 11 and I2 are satisfied (excluding the trivial solution 
11 = 12 = 0) by taking sin($) = 0. If one defines the quantity w, 

w : [E//EIICOS('$) I (10) 

it must be +l or -1. The condition for $ is then 

E = -[~/j~f]w*D* (211)p-1(212)q-1 

x [(2P)2(21,) + (2q)2(211)l. (11) 

Since D is positive by definition, this is satisfied only for w = -1. 

Action variables I 1 and I 2 are related to the emittance of the beam 
E 1 and E 2' 

211 = El," , 212 = E2/lr (12) 

and one finds the expression for the "bandwidth" given by Guignard, 2 

Ae E 21~1 = 2D (El,'~)p-1(E2/r)q-1 

x [(ZP)~(E,/M + (2q)2(El/d1. (13) 

A peculiar feature of this expression is that, for p = l/2, the width 

increases indefinitely as El approaches zero while E2 is fixed. This 

is contrary to the meaning of resonance width as it is generally under- 
stood. This peculiar feature is related to the (erroneous) statement 

made by Sturrock in connection with the resonance "1 + 2~~ = n: 

"The most surprising feature of the stability diagram of Fig. 28 



Since the Hamiltonian, Eq. (61, is independent of the variable 8, 
it is an invariant. From two invariants H and C, Eq. (8), one can 
construct two invariant expressions Ql and 02, 

@l = H +(E/~I.C.(~S)~/[(~P)~+(~~)~I 

= (~/2) (211)/(2p) + D-cos($)* (211)p(212~q, (14) 

0, = 
‘ H - (s/2)*C* (2~)3(2~)~+(2q)~l 

= (E/2 ) (212)/(2q) + D*cos(@)* (211)p(212)q . (15) 

One can further simplify the form of two invariants by the normali- 
zation 

h 5 A.[E/IEI]*@~ , u 5 A*[s/IsI]* o2 (16) 

where 
A = (2/)~1)(2D/I~l)"~(2p)~'~(2q)~", (17) 

szp+q-l. (18) 

The corresponding normalization of two action variables is 

u2 q (211). (2D//~$"52p)~"~(2q)q'~, (19) 

v2 5 (212).(2D/~s~)1's(2p)p's(2q)p"s, (20) 

- 4 - 

is that there are points of arbitrarily small amplitudes u, v, which 
lie outside the stable region." 1 
The purpose of this note is to examine in detail why resonances of 
the form v1 + (WV2 = n are different from others. The special 
property of these resonances has been pointed out by Lysenko3 but 
his argument is qualitative. The.discussion given below is intended 
to delineate the point and also to show how to find the resonance 
width which is different from the one given by Guignard. 
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where p' E 1 - p and q' 5 1 - q. The final form of two invari- 

ants is 

A = u2 f u2pv2q 'WI (21) 

y = Y2 + u2pv2q.w. (22) 

For physically meaningful solutions, both u and v must be positive 
(or zero) and IwI must be less than or equal to unity. One can 
eliminate the variable v using the relation 

v2 2 =u - (A - v), (23) 

and the problem is reduced to finding the amplitude u such that 
the absolute value of 

h - u2 
w= 

U 2p (u2 - h + u)q 

(24) 

is less than or equal to unity. The motion is stable if this condi- 
tion restricts the value of u within a finite range. In the (X, p) 
space, there are three regions with different characteristics: 

(1) First quadrant, A > 0 and j.l > 0. See Fig. 1A. - 
The function w(u) has one minimum point. If the mini- 
mum point is below -1, the motion is stable (curve S). If 
the point is above -1 (curve U), u can take any value and 
the motion is unstable. The limiting case is the curve L. 

(2) A=0 andp >O. See Fig. 1B for p = l/2. There is no 
stable motion for other values of p. 

(3) Second, third and fourth quadrants, &4<0,~>0), (X<O,P<O) 
and (~A>0,!.1<0). Note that p = 0 is excluded. The function 
w(u) can have one maximum and one minimum points. See Fig. 
1c. It will be shown below that there is no stable motion 
of this class unless p = l/2 
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The maximum or minimum points are solutions of the condition 

dw(u)/du = 0 

which takes the form, with 2 x-u, 

(2s).x2 - 2[(s+p)h+(l-p)Ll]*x + (2p)h(X-l-I) = 0 

and the solutions are 

uM2 = 1/(2s) * [(s+p)X+(l-p)y i JM] , 

M E (s-P)~X~ + (l-p)2J2 + 2[(s+p)+p(s-p)lJ4lJ . 

The corresponding values of v2 are 

"M 
2 2 =u M - (A - u) 

= (1/2s)* [-(S-p)x+(2S-p+1)~1 ;/Ml. 

Since uM2 must be real, M must be either 0 or positive. 

1) p = 1. 

M = 4Sh*I> + 
(s-l)2 

.xj > 0 
4s 

(25) 

(26) 

(27) 

(28) 

(29) 

2) EJ + 1. 

M = (1-p)2(JJ + gx) (p + Tlh) > 0. (30) 

Comparing this expression with Eq. (27), one sees that both 
E, and n are non-negative. 

In (X, 11) space, conditions (29) and (30) exclude the shaded areas 

as shown in Figs. 2A - 2D. 
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Fig. 2A 
p=q=s=l 

Fig. 2D 
p=1/2, q=l 
s=p 

From Eq. (26), it is obvious that there are at most two values of 

"M . At the same time, from Eq. (24) for w(u), it is already known 
that there is one minimum point when both X and li are positive. 
The remaining problem is then to find the conditions for two values 
of u M to exist in the second, third and fourth quadrants of (A, P) 
space. 

From Eq. (28), in order to have two real values of vM, it is 
necessary to satisfy the condition 

1-I > S-P *A . 
2s-p+l 

(31) 
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Since s >/P! the coefficient in front of A in Eq. (31) is non-nega- 
tive. This condition excludes the fourth quadrant h > 0 and p i 0. 

Two values of s are possible if and only if the following two condi- 
tions are satisfied Lsee Eq. (.26)], 

(s+p)A + Cl-p)!J > 0, (32) 

I (s+p)A+(l-p)uJ2 3 M (33) 

The condition (33) is equivalent to !J>A in the second and third 
quadrants of (A, p) space. However, this is automatically satisfied 
because of the condition (31). The coefficient in front of A is 

always less than unity, 

s-p < 1. (34) 
2s - P+l 

As for the condition (32), 

(1) P = 1, A > 0 (fourth quadrant) which is already excluded. 

(2) P > 1, I-I < [(s+p)/(p-1ll.A 

The coefficient in front of X is always larger than 3 and 
the condition is in contradiction with the condition (31). 

(3) P = l/2, 
p > - 2q.x 

This condition as well as the condition 
in the second quadrant X < 0 and JJ > 0. 

By evaluating 5 and n in Eq. (30) for p = l/2, 

(5, q) = (6s + 1) + 4Js(2s + l), 

one can see that 

n < (a) < 5. 

(35) 

(31) are satisfied 

(36) 

(37) 
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In conclusion, stable motions are possible if 

1) h > 0 and v>o for p#1/2. 

2) A>,0 and y>O or A<0 and ii > -I6s+l f 4m].A - 
for p = l/2. 

The resonance studied by Sturrockl corresponds to p = l/2 and q = 1. 
He missed the region X < 0 and )J >. -8A which is shown in Fig. 1C. 
If h is limited to positive values, one finds from Eq. (21) with 
w=-1, 

u2(p-l)v2q < 1 (38) 

For p = l/2, this leads to the exclusion of points near the origin as 
stated by Sturrock. In order to find the stable region in the phase 
space or, equivalently, in (u, v) space, one must solve [dw (u) /dul 
= 0 together with w(u) =-1 for u=uM, the maximum possible stable 
amplitude. Analytical solutions are possible for (p=1/2, q=l)l and 
for (p=q=l).4 For lil +2v 2 = n, the limiting values (u,, vM) of 
Figs. 1A and 1B satisfy the relation 

"M 
2 = 2.UM(1 - UM) (39) 

which is equivalent to the expression of bandwidth, Eq. (13), found 
by Guignard. 2 If the case represented by Fig. 1C is included, one 
finds that the stable motion is confined in the region bounded by 
u = 0, v = 0, Eq. (39) and 

v = (1 + u)/2 (40) 

as shown in Fig. 3. 

Finally, it is perhaps important to include at least the lowest- 
order, phase-independent terms of the form 

AU4 + Bu2v2 f Cv4 (41) 

in the expressions (21) and (22). The analysis will then become much 

more complicated. 



- 11 - 

References 

1. P. A. Sturrock, Annals of Physics, 3, 113 (19581, Chapter 10. 
2. G. Guignard, CERN-IsMA/75-35, 31st August. 1975; CERN 78-11, 

10 November, 1978. 
3. W. P. Lysenko, Particle Accelerators, 2, 1 (1973). See Fig. 4. 
4. S. Ohnuma, Fermilab TM-507, July 15, 1974. 


